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The limiting law of the Debye theory of strong electrolytes (7) is now 
firmly established. As experimental technique improves, the measure- 
ments agree better and better with the theory. The extension to con- 
centrated solutions is more difficult, because many specific properties of 
the ions must be taken into account. Much progress can be made, how- 
ever, both in the rational expression of the properties of solutions of simple 
ions and in the application of a few general principles to give treatments of 
the properties of solutions of mixtures in terms of the properties of solu- 
tions of their components which are very useful in the study of chemical 
equilibria. 

The limiting law depends only on the valences of the ions, the tempera- 
ture, and the dielectric constant of the solvent. In  more concentrated 
solutions the sizes of the ions and their effects on the dielectric constant 
must be taken into consideration. The latter is not the effect on that di- 
electric constant measurable by macroscopic instruments, which is an in- 
crease due to the electrostatic interaction between the ions (10, 38,39), but 
is the effect on the microscopic dielectric constant, which is a much smaller 
decrease due largely to the displacement of the solvent (29). Recently 
Wyman (40) has shown that the dielectric constants of polar and non-polar 
mixtures are proportional to the concentrations of the polar liquids, and 
Onsager (21) appears to have explained this finding theoretically. If 
this is also true for the microscopic dielectric constant of electrolyte solu- 
tions, then the square of the reciprocal thickness of the ion atmosphere, 
~2 of the Debye theory, is proportional, not to the number of ions in unit 
volume of the solution, but rather to the number in unit yolume of the 
solvent, or, a t  constant temperature and pressure, to  the number in unit 
weight of the solvent. This relation simplifies greatly the correlation of the 
theory with thermodynamic treatments. We should not expect the rela- 
tion to be exact, but it is certainly very much better than the one usually 
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made that the ions do not affect the dielectric constant. Those who have 
felt themselves forced to use ionic strengths in moles per liter of solution 
because the theory demands it, may be relieved to know that a much 
better theory demands that the ionic strength be in moles per unit quantity 
of solvent. 

Not only does the electrostatic interaction between the charges depend 
upon the sizes of the ions and their effects on the dielectric constant of the 
solution in concentrated solutions, but there are also other interactions 
between ions which correspond to the salting out of non-electrolytes and 
to  the deviations of purely non-electrolyte solutions from the ideal solu- 
tion laws. The exact treatment would require the insertion of three kinds 
of energy in the statistical expressions and would give equations much too 
complicated for solution. To obtain an approximate solution we assume 
that the distribution of the ions is determined solely by the electrostatic 
interaction of their charges and, except in the calculation of the “higher 
terms’’ of Bjerrum (6) and Gronwall and LaMer (12), we assume the Debye- 
Huckel first approximation for this distribution. Then the total ion con- 
centration is independent of the distance from the central ion, but the 
fraction of this concentration made up of ions with charges of the same 
sign as that of the central ion is very small in the neighborhood of the cen- 
tral ion. We assume that it is zero for all distances a t  which the short 
range interactions come into play. This is exactly the basic assumption of 
BrQnsted’s theory (4, 5 )  of “specific ion interaction.”Z 

Using the methods of Debye and his colleagues for the charge-charge 
interaction (7) and the “salting out” (8, 19), and my own expression for 
the non-electrolyte term (28), we obtain the following expression for the 
non-ideal free energy per mole of ion of a solution of two kinds of ions. 

in which F - F I  is the non-ideal free energy of the system; N ,  is the num- 
ber of moles of electrolyte; vl and v2 are the numbers of ions of the two 
kinds per molecule of electrolyte, z1 and 22 their valences, one of which 
must be negative, and Vl and V2 their molal volumes; e is the electronic 
charge; N is Avogadro’s number; N O  is the number of moles of solvent, 

An expression for the thermodynamic properties of electrolyte solutions includ- 
ing the non-electrolyte effects was published by the author some years ago (29). 
It differed from the present expression in that the relation between the volume and 
the effect on the dielectric constant was left arbitrary and that the distribution of the 
ions was considered uniform for the calculation of the “salting out” and the non- 
electrolyte terms. The expression given here is believed to be a considerable 
improvement. 
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Vo is its molal volume, and DO its dielectric constant; bl and bz are the radii 
of the two ions effective for salting out. The other symbols are defined 
in the following equations, in which a is the sum of the two radii effective in 
collisions between ions, and a12, alo, and azo arc the mutual cohesive energy 
densities. 

v s  = v1 + v2 

l + K a - - -  2 In (1 + Kn)] / K2a3 
1 + Ka 

The first term in the brackets is nearly the same as the Debye-Huckel 
expression for the charge-charge interaction for constant dielectric con- 
stant. It is negative and initially proportional to the square root of the 
concentration, but the slope decreases so rapidly with increasing concentra- 
tion that the effect of the difference between K and K O  of Debye and Huckel 
is very small. The second term represents the effect of the changing dielec- 
tric constant on the charge-charge interaction. It is also negative and is 
proportional to the first term times the concentration. The last term in 
the brackets represents the charge-molecule part of the "salting out." 
It is usually positive, and is proportional to the concentration a t  all con- 
centrations. The term outside the brackets represents the non-electrolyte 
molecule-molecule interaction, which is usually negative. It is initially 
proportional to the concentration, but the slope decreases as the concentra- 
tion increases. Wyman's theory of the dielectric constant is used when- 
ever DO, K ,  X ,  or Y appear in an equation. Bronsted's specific ion inter- 
action is used to  determine a from the sum of the two effective ion radii 
alone for the charge-charge term, to substitute 2 (V2z : /b l  + V l z i / b 2 )  for 

~ 
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V,(z?/bl + z $ / h . )  in the charge-molecule term, and to substitute 
2v1Vlv2V2 for V t  in the molecule-molecule term. 

It may surprise you to see the charge-molecule effect given by the ex- 
pression which corresponds to the Debye-MacAulay (8) salting-out equa- 
tion rather than to the modified expression of Debye (9), particularly since 
we have recently shou-n that the experimental salting-out results agree 
with the latter (36). This choice is correct, however, and follows from our 
assumption that the distribution is determined solely by the charge-charge 
interactions. 

With this expression for the non-ideal free energy we have no further 
need of approximations. The other quantities may be calculated from it 
exactly by thermodynamics alone. The equations for the logarithm of 
the activity coefficient, In y,  and for the osmotic coefficient, 4, follow. 

[ Z I Z ~ ~  + (ea + X )  zlzzVsm In y = - In (1 + vSNs/No) + - - 
2RTDo 1 + KU 

€2N 

In (1 + v,Ns/No) 
vaNs/No d , =  

Am 
+ R T ( ~  + V,m)2 

In  each the first term gives the value for ideal solutions, which is approxi- 
mately -0.018 vsm for In y and approximately 1-0.009 v,m for 4. The 
other terms correspond to the free energy equation in order, and have the 
same sign in each equation. If the slope is strictly proportional to some 
power of m in the free energy equation it is in the others also; if the slope 
decreases with increasing concentration it decreases more rapidly in the 
equation for In y and still more rapidly in the equation for d,. 

The equations for In y and d, are not very much more complicated than 
the approximate equations of Huckel (19), which are given by taking the 
first term and the first and third terms in the bracket, using the volume of 
the solution rather than that of the solvent in the terms in the bracket, and 
giving another definition to the constant coefficient in the third term. 
The added complication of the second term in brackets and the last term is 
partially compensated by the more convenient concentration units. These 
equations also have the advantage that they are thermodynamically con- 
sistent. 

The Bjerrum-Gronwall-LaMer “higher term correction” is omitted 
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from the above equations. 
In Yh and $h for the case that z = z1 = - z2 are: 

The Gronwall-LaIPer expressions (12) for 

+ V,m(Y, - F)] 

in which X, and Y n  have the same meanings as in the original paper. 
This treatment might be extended to the heat and volume changes on 

dilution and to  their temperature and pressure derivatives, but the tem- 
perature and pressure derivatives of so many parameters are involved that 
it seems advisable to omit this extension for the present. For the equa- 
tions given above me need know only the temperature, the molal volume 
and dielectric constant of the solvent, the valence, molal volume in solu- 
tion, and radius effective in salting out for each ion, the effective collision 
diameter a of the pair of ions, and their molecule-molecule interaction 
coefficient, A .  The alkali and halide ions may be assumed spherical, and 
we shall use the values of their radii determined by Pauling (22) from the 
crystal lattices.3 For spheres b = r and a = rl + rz. The volume in 
solution may be expected to  be somewhat less than four times the actual 
volume of the molecules, 47rr3/3, and the constant A may be assumed to  be 
the same for all the alkali halides and may be expected to be about the 
same as that  for the aliphatic hydrocarbons in water. 

We shall make the comparison with the experimentally determined os- 
motic coefficients, which have the adsrantages over the activity coefficients 
of the solutes that they may be determined for a much larger number of 
solutions and that they involve no extrapolation to zero concentration. 
Freezing-point measurements give the most accurate values of the osmotic 
coefficients, but they have the disadvantage that they are not isothermal. 
For concentrated solutions measurements of vapor pressure or by the iso- 
piestic or isotonic method are much superior. Of these the latter are con- 
siderably more accurate. We shall use the measurements of Sinclair and 
Robinson by this method, but we shall use as standard our curve for sodium 
chloride, which appears to me much better established than that of potas- 
sium chloride. Our measurements of the relation of the osmotic coeffi- 
cient of potassium chloride to  that of sodium chloride check theirs very 
closely. They have made measurements with all the alkali chlorides, 

These values in ibgstrom units are: Li, 0.574; Na, 0.873; K, 1.173; Rb, 1.294; Cs, 
1.434; F, 1.225; C1, 1.589; Br, 1.702; I, 1.867. 
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bromides, and halides up to  saturated solutions or to solutions isotonic 
with saturated potassium chloride. 

We cannot be satisfied with approximate values of the ratio of the volume 
in solution to  the actual volume of the ions or of the non-electrolyte reac- 
tion coefficient, A ,  but each of these quantities must be determined more 
precisely than the osmotic coefficient itself. They were therefore deter- 
mined from the osmotic coefficients of 1 molal lithium bromide and cesium 
bromide. The volume so determined is 0 . 0 0 8 ~ ~  if the volume is in liters 
per mole and r in h g s t r o m  units, which is 3.15, or somewhat less than 
four, times the actual volume of the molecules. This value for the volume 
leads to AIRT = 0.0089 r i r i ,  which is one-third the value for an aliphatic 

0.5 1.0 1.5 2 

B 
FIQ. 1. Osmotic coefficients of alkali halides a t  25°C. 

hydrocarbon in water. Of the two parameters whose exact values must be 
determined from the experimental data, one corresponds very closely to the 
expected value, the other only approximately so. The agreement is per- 
haps as good as should be expected, for the calculated values depend upon 
an unjustified extension of the theory of non-polar mixtures, and our treat- 
ment is such that an error in any of our other approximations is carried 
over to this parameter. For example, a small error in the volume ratio 
given above would be doubled in the calculation of A .  

In  figure 1 the curves represent the calculated values of the osmotic co- 
efficients and the dots represent the published experimental results of 
Robinson and Sinclair (23, 24). For sodium chloride the circles represent 
our choice (37) of the most probable curve through the results from elec- 
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tromotive force and vapor pressure determinations. Our curve was also 
influenced by measurements on potassium chloride, sulfuric acid, sucrose, 
and a-methylglucoside. For rubidium bromide and iodide the crosses 
represent experimental measurements reported privately by Dr. Robin- 
son (26), and for the cesium salts the crosses are his smoothed values from 
new measurements. The differences between the crosses and circles are 
small except for cesium iodide, but wherever there is any difference the 
crosses should be accepted. 

The curves for lithium bromide and cesium bromide, which are made to  
fit the experimental points a t  1 molal, show very satisfactory agreement 
throughout, if we consider that there are only two arbitrary parameters 
for the two curves. The agreement is about as good for the other chlorides 
and bromides, although they were not used a t  all in the determination of 
the parameters. The calculated values for dilute solutions with small ions 
are distinctly low. There is also a tendency, increasing from chlorides 
through bromides to iodides, for the calculated values to  be too high in 
concentrated solutions. On the whole, however, the agreement is very 
satisfactory. 

It would be entirely legitimate to  tinker with the calculated results to 
give better agreement with the measurements. Pauling’s ionic radii are 
only approximate, and there is no reason to  suppose that the radii in solu- 
tion are exactly the same as those in the crystal lattices. A slight increase 
in the sizes of the smaller ions would greatly improve the fit in dilute solu- 
tions. It is impossible to predict whether such a change would also remedy 
the difficulties in concentrated solutions. It might be necessary to alter 
the molecule-molecule term also so that it remains more nearly propor- 
tional to the concentration to correspond to the behavior of less polar 
solutes in water rather than to  the too simple theory. It seems advisable 
for the present, however, to  determine from the properties of the solutions 
only those parameters which are absolutely necessary, and to be satisfied 
with this approximate agreement. 

These results do show that the alkali and halide ions are characterized 
by their valences and sizes alone. The decrease of the osmotic coefficient 
with increasing size of the cation for the chlorides, bromides, and iodides 
and the decrease with increasing size of the anions for the cesium salts are 
explained by the facts that the term for the charge-charge interaction is of 
secondary importance in concentrated solutions and that the deviation of 
the osmotic coefficient from unity is not far from the difference between 
the salting-out term and the non-electrolyte term. The first of these is 
largest when one ion is small and the other large; the second becomes more 
important when both ions are large. The theory does make the osmotic 
coefficients of the rubidium salts increase with increasing size of the anion 
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like those of the lithium, sodium, and potassium salts, while the experi- 
mental osmotic coefficients decrease like those of the cesium salts. The 
calculated increase and the measured decrease are both so small, however, 
that the difference in sign is unimportant. The theory also agrees with 
the freezing-point measurements (11) in making the osmotic coefficients of 
the fluorides increase with increasing size of the cation in the opposite order 
to those of the other halides. Quantitative agreement TTould require a 
larger radius for the fluoride ion than that given by Pauling, for the calcu- 
lated potassium, rubidium, and cesium curves are all about the same as 
that of cesium chloride, and Lannung's direct vapor-pressure measurements 
(20) indicate that they should be about the same as that of sodium bromide. 

The application of this method to polyatomic ions is considerably more 
complicated, for such ions cannot be assumed to be spherical and several 
parameters for each ion must be determined from the properties of the 
solutions. There are a t  least two types of variations from the behavior of 
the halides (31). The hydroxides behave very much as the fluorides, and 
the formates and acetates behave as though a, b, and A were about the same 
as for the fluorides, but V were very much larger. The nitrates, chlorates, 
and perchlorates, on the other hand, behave as though a, b,  and V were 
about the same as for the bromides, but A were very much larger. The 
application to mixtures is even more complicated, largely because the pres- 
ence of two kinds of cations, or two kinds of anions, with different sizes 
makes the expressions for the interaction of the ionic charges very much 
more complicated (29). 

We may make considerable progress, particularly in the study of mix- 
tures, without such a detailed treatment. R e  start ivith the very general 
result of statistical mechanics that that part of the non-ideal free energy 
per unit quantity of solution which is contributed by short range forces 
may be expressed as a multiple integral power series in the molalities of the 
various components. We use also the result of the Debye-Huckel theory 
that the effect of the long range forces between the ionic charges requires a 
multiple power series containing the square root of the ionic strength as 
well as the concentration of each component, and we combine the two 
to give the following series, in which the numerical values of the A's are 
given by the Debye-Huckel theory (33, 34): 
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i v i  is the number of moles of ions of the ith component in the system, 
N O  is the number of moles of the solvent, and woNo is unit mass of solvent; I 
is twice the ionic strength in moles per unit mass of solvent. The B’s, 
C’s, D’s, and E’s are determined by the properties of the solution. The 
following expressions for the activity coefficients and the osmotic coeffi- 
cient are obtained from the free energy expression by thermodynamics 
alone. 

) Z 2  + 3 ZzlD21pm,mj 3 Z2jEllpmPml + &jkEtjhmzmjmh <I + . . * .  . * * ( 
d = 1 + + <I ZtAtx2 + M Z,? (R1 + Cz, 4) GX, 

+ M 2  &k (2Dtlk + E t l k  4 I )  X J ~ X ~  + 9 * * * * * * 

in which m, = Nl/woNo,  M = Z2m,, x, = m,/M. 
There is no theory which tells us that these series must converge con- 

veniently. In fact they will be divergent if there is a fairly large amount 
of chemical combination or any other interaction which is limited t o  a pair 
of molecules or ions, such as that described by the “higher term correction.” 
This difficulty could probably be remedied by adding to each term in the 
concentrations another coefficient times the logarithm of the ionic strength, 
but there are as yet no experimental data to  warrant this extension. If an 
interaction is not limited to two molecules its effect may be large and still 
lead to convenient convergence. We have found that the freezing-point 
depressions of most uni-univalent electrolytes may be represented up to 
concentrations of 1 molal by the five terms given above, and I shall show 
later that no type of series can be simpler than this one .c\ith four terms. 

For a single solute these equations have little advantage over graphic 
methods, provided that the latter also make use of the Debye limiting law. 
For mixed solutes, on the other hand, the gain is enormous. 11-e made 
about thirty determinations for each single salt (35). To cover the field 
as completely would require four hundred fifty determinations for a bi- 
nary mixture, forty-five hundred for a ternary mixture, and almoqt thirty- 
four thousand for a reciprocal salt pair, and the graphical treatment of the 
results would be a stupendous task. The use of these equations reduced 
the measurements needed to one one-hundredth, and probably reduced 
the labor of handling the data more than that.  

A still further gain for mixtures is obtained from the assumption that 
the short range forces between two ions with charges of the same sign may 
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be neglected unless there is a third ion of the opposite sign in their imme- 
diate neighborhood. Then the B and C coefficients for any mixture can 
be determined from the single salt solutions, and the D and E coefficients 
can be determined from the single salt solutions and one solution of each 
mixture with a common ion. 

The most comprehensive test of the application of this method to mix- 
tures is our own study of the freezing-point depressions of mixtures of po- 
tassium nitrate, potassium chloride, lithium nitrate, and lithium chloride 

FIQ. 2. Osmotic coefficients of mixtures a t  0°C. A, KC1-LiC1; 
C, KC1-LiN03 or KNOZ-LiC1. 

B, KNOs-LiNOs; 

(35). The series, simplified as described in the last paragraph, describe 
the measurements exactly. Since this method requires very precise and 
comprehensive measurements which are not yet available in any other 
case, we shall be more interested in the conclusion that all the parameters 
may be determined approximately from measurements on single salts 
alone. If they were exactly determined the osmotic coefficients of mix- 
tures with a common ion would be additive. Figure 2A shows the osmotic 
coefficients of potassium chloride, lithium chloride, and their 1-1 mixture, 
plotted against the square root of the molality. The broken curve is the 
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mean of the curves for the two salts. It agrees closely with the experi- 
mental curve for the mixture in dilute solutions as our theory demands, 
and the difference is not very great even a t  1 molal. Figure 2B shows 
about the same agreement for potassium nitrate, lithium nitrate, and their 
1-1 mixture in spite of the greater spread between the two salts. I shall 
omit the curves for the mixtures potassium nitrate-potassium chloride and 
lithium nitrate-lithium chloride, for they show no difference between the 
calculated results and the measurements up to  1 molal, which is the limit 
of our measurements. Figure 2C shows the 1-1 mixture of potassium 
nitrate and lithium chloride, which is also the 1-1 mixture of potassium 
chloride and lithium nitrate. The lowest broken curve is the mean of the 
curves of the first pair, and the highest is the mean of those of the second 
pair. Neither agrees well with the experimental curve. Our theory 
demands, however, that in this case without a common ion the curve be 
given by the mean of those for all four salts of the reciprocal salt pair. 
This is given by the middle broken curve, which agrees with the experi- 
mental measurements about as well as those in which only the anion is 
changing. 

It is not a t  all necessary to represent the Debye-Huckel limiting law by a 
term proportional to the square root of the ionic strength, but any func- 
tion of the ionic strength which reduces to this in very dilute solutions may 
be substituted. Ever since Huckel’s first paper on concentrated solutions 
(19), attempts have been made to find some function of the ionic strength 
depending only on the valence type, the individual deviations from which 
should be proportional to  the concentration. If there were any such func- 
tion the osmotic coefficients of mixtures with a common ion would be 
strictly additive a t  all concentrations; so figure 2 shows that such a func- 
tion cannot exist. We will also see from measurements on single salts 
that  such a function is impossible. Nevertheless, it is very convenient to 
subtract from the logarithm of the activity coefficient the Debye-Huckel 
limiting law divided by 1 plus the square root of the ionic strength 

The corresponding expression for the osmotic coefficient is 

The next figures show as A+ the deviations of the osmotic coefficients 
from this function plus a term linear in the ionic strength. Figure 3 gives 
A 4  up to 1 molal determined from freezing points for potassium nitrate 
(30), potassium chloride (31), and potassium acetate (32). It shows that 
this function is a convenient one from which to plot deviations, but that 
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these deviations are much larger than the experimental errors. It also 
shows conclusively that no other function common to all three salts will 
reduce the deviations of all of them. Figure 4 shows A$ for the same salts 
up to 3.5 M ,  determined from the isotonic measurements of Robinson and 
Sinclair (23,25) a t  25°C. and our curve for the osmotic coefficient of sodium 
chloride. It confirms the conclusions from the previous figure, and shows 
that these do not depend on the temperature variation in the freezing-point 
method. 

Figure 5 illustrates the complications that may be expected with salts 
of higher valence type, or with solvents of lower dielectric constant than 
water. It shows A 4  determined by the isotonic method at  25°C. for mag- 
nesium, manganese, nickel, zinc, copper, and cadmium sulfates by Robin- 

FIG. 3. Deviations of osmotic coefficients a t  0°C. 

son and Jones (26). It may appear 
that the differences between these curves and any one of them taken as 
standard would be more nearly proportional to the concentration than 
the deviations shown here, but the actual gain is very small. All of the 
curves are positive in dilute solutions and must come to zero very steeply. 
Moreover, if the theory of “higher terms” is even qualitatively correct, 
they should all be negative in very dilute solutions, and they must there- 
fore descend very rapidly with decreasing concentration and then rise still 
more steeply. Hausrath (18) has measured the freezing-point depressions 
in very dilute solutions of all but manganese sulfate, and his measure- 
ments yield negative values of A4,  more negative for those salts whose 
values are lower in this figure. The insert shows the first two points of 
Robinson and Jones for magnesium sulfate and also A$ from the freezing- 
point measurements of Hall and Harkins (14). The scale of ordinates of 

The linear term is 0.1 M in all cases. 
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this inset are the same as in the main figure, but the scale of abscissas is 
magnified ten times. The agreement of the two series in the more con- 
centrated solutions is as good as could be expected at  such different tem- 
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FIG. 4. Deviations of osmotic coefficients a t  25°C. 

peratures. In  more dilute solutions the freezing points yield negative 
values of A4, in agreement with Hausrath’s measurements and the theory. 

Similar expressions for the logarithm of the activity coefficient have 
frequently been used, and always with the assumption that the term cor- 
responding to oyr A+ is zero. The expression used by Huckel (19) and 
by Harned and Akerlof (15, 16) for hydrochloric acid and the alkali chlo- 
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rides differs only in the inclusion of the ideal solution expression as in our 
first equation, in the expression of the ionic strength per unit volume of 
solution rather than of solvent, and in the use of a constant k greater than 
unity in the expression 1 + k v ' i .  Guggenheim (13) has extended the 
use of their expression, changed only by making k unity, to all strong elec- 
trolytes. Instead of subtracting the ideal solution term for the osmotic 
coefficient, Guggenheim invents a new osmotic coefficient for which this 
subtraction is unnecessary. This is somewhat less convenient than our 

FIG. 5 .  Deviations of osmotic coefficients of sulfates of bivalent metals 

form, but not seriously so. However, in the calculation of activity coef- 
ficients of the solute from the osmotic coefficients, he uses thermodynamic 
relations which are exact for our coefficients but only approximate for his. 
This sacrifice of exact thermodynamics seems quite inexcusable. Guggen- 
heim limits the use of his expression to ionic strengths less than 0.1 molal, 
and appears to  consider the expression exact within these limits. An 
examination of figure 3 shows that a straight line through the point a t  
0.1 molal will not miss seriously any of the points in more dilute solutions, 
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but that  the best smooth curve through all the points shows considerable 
curvature below 0.1 molal and differs from the straight line by an amount 
which is not unimportant in the calculation of the activity coefficient of the 
solute by integration. With salts of higher valence type the discrepancy 
is still more serious. Guggenheim claims that the measurements of Hall 
and Harkins are fitted by his expression up to 0.025 M ,  and the error which 
he ascribes to the measurcments is not many times those made by these 
observers with other solutes. An examination of figure 7 shows, however, 
that a straight line through the point a t  0.025 M intersects the best smooth 
curve through all the measurements almost a t  right angles. 

Akerlof (1, 2, 3) uses as norm the experimental curve for hydrochloric 
acid, and assumes that the deviations for other clectrolytes are propor- 
tional to the ionic strength in moles per unit quantity of solvent. For 
uni-univalent electrolytes this corresponds closely to the use of our exprcs- 
sion, with k considerably larger than unity. For other valence types his 
treatment is contrary to the Debye-Huckel theory and to experiment. 

Although the relation is inexact as we have just seen, it is often con- 
venient to assume as an approximation that A$ and the corresponding ex- 
pression for the logarithm of the activity coefficient are zero. It is still 
more convenient, and at the same time more accurate, to make two other 
approximations which would be exact if there were any such function and 
if BrGnsted’s theory (4, 5) of “specific interaction” were exact. If all the 
ions have the same absolute value for the ionic charge, these two assump- 
tions are sufficient. If they have not, there is an ambiguity which may 
be removed by treating the ions as independent components. It is there- 
fore convenient to express our approximations in terms of the individual 
ion activities, although we shall use them only in such combinations that 
the addition or removal of the corresponding ions leaves the solution elec- 
trically neutral. We shall assume that 

in which p is the ionic strength, A is given by the Debye-Huckel limiting 
law, z k  is the valence of the ICth type of ion, m3 is the molality of thejth ion 
species. If the expression corresponding to A$ were zero, fkj(p) would be 
independent of the ionic strength, so we know that it varies only slowly 
with the ionic strength. The use of a function of the ionic strength 
rather than of the concentrations of all the solutes makes In y a linear’ 
function of the composition at constant ionic strength. This relation has 
been shown, particularly by Harned and his coworkers (17), to hold almost 
within the experimental error up to the highest concentrations studied. 
If fi~)(p) is strictly constant, it  is zero by Brgnsted’s theory of “specific 
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ioninteraction,”if the j a n d  IC ions have charges of the same sign; f k j ( p ) / z h  = 
fjk(p)/zi by the condition of integrability, assuming the ions to be indepen- 
dent components, if z k  and Z j  have opposite signs; and fkj(,U) = fjk(P) by the 
same condition if either zk or Zj is zero. We may extend these relations as 
approximations even to concentrated solutions. 

If both ions have the same absolute value of the charge, it follows that 
the activity coefficients of the two ions are equal to each other and to the 
mean activity coefficient in a solution of a single salt. In a solution of 
another salt of the same valence type, the mean activity coefficient is the 
geometric mean of those of the solute salt and of the solvent salt if they 
have an ion in common, and i t  is the geometric mean of those of the 
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FIQ. 6. Deviations of logarithms of activity coefficients a t  constant ionic strength 
of unity. 

reciprocal salt pair if there is no common ion. In the case of ions with 
different absolute values of the valence the relations are more complicated, 
because the first part of the expression is proportional to the square of the 
valence, and the second part is proportional to the absolute value of the 
valence, but the relations are given just as definitely by the assumptions 
we have made. The important result of these assumptions is that the 

*activity coefficients of any salt in any salt mixture may be determined from 
measurements on single salts alone. 

In  case the solubility is too limited to permit the determination of the 
activity coefficients from measurements on solutions of the salt itself, they 
may be determined by measurements with a single mixture and the use of 
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the above approximations. If there are not enough measurements to use 
the above principles, the functions of the ionic strength may be taken as 
contents with sufficient accuracy for many purposes. This corresponds 
closely to ijkerlof’s treatment of uni-univalent electrolytes (1). If there 
are no measurements a t  all with the salts in question, the magnitude of 
the functions may be estimated from the behavior of other similar salts. 

If either zk or zj is zero, the function f j k ( p )  can be determined only from 
measurements on mixtures, or from theoretical considerations. The terms 
for the individual ions cannot be separated, but as long as the function is 
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FIQ. 7. Deviations of logarithms of activity coefficients at constant composition 
of solute. 

strictly constant, it must be additive for the ions. For the distribution of 
either electrolyte or non-electrolyte between the solution and another phase, 
our treatment tells us only that the logarithm of the activity coefficient is 
nearly proportional to the concentration of the other species. For homo- 
geneous chemical equilibria i t  is helpful to make another approximation. 
If there is a reaction A + B = C, we assume that f C j ( p )  = faj(p) + fb j (p) .  

If either z. or zb is different from zero, this assumption is contradictory to 
those we have made concerning the relation of these functions to the val- 
ence, but there are compensating errors which should make it fairly satis- 
factory in spite of that fact. 
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Many of these assumptions may be tested only in isolated cases which 
would require too much space for presentation. The application to mix- 
tures of uni-univalent electrolytes in aqueous solution may be tested from 
the activity coefficients determined by the freezing-point measurements on 
mixtures of potassium nitrate, potassium chloride, lithium nitrate, and 
lithium chloride discussed above (35). The results are all expressed as 
deviations from the first term in the logarithm of the activity coefficient 
given above, A In y. Figure 6 shows the second term for each of the four 
salts in all the possible binary mixtures a t  a constant ionic strength of 1 
molal. The mixtures with a common ion are in the center and those with- 
out are a t  the sides. It shows that the logarithm of the activity coeffi- 
cient is very nearly a linear function of the composition even in these con- 
centrated solutions. None of these curves is a straight line, but the 
deviations are so small as to be scarcely visible in most, and the assump- 
tion of linearity would produce no great error in any of them. 

The 
left-hand side gives as full curves the results for the four salts, each in its 
own solution. The broken curves are the Debye limiting law (D) and the 
first term, or standard from which the deviations are calculated (S) .  In 
the rest of the figure a full line represents A In y for the salt indicated on the 
curve in a solution of the salt indicated on the companion curve, and the 
broken line is the calculated value for either. This figure shows that the 
calculation from the properties of single salt solutions is not only more 
useful than the assumption of proportionality, but that it is also more 
accurate. Yet interpolation from concentrated to dilute solutions with 
the assumption of proportionality would not lead to serious errors even in 
the worst cases. The deviation of the measured values from those cal- 
culated from the properties of single salt solution varies widely from salt to 
salt, but in no case is the difference more than a few per cent, even in molal 
solutions. 

This paper includes two quite different subjects: the calculation of the 
equilibrium properties of solutions of simple ions from the physical proper- 
ties of the ions, and the calculation of the properties of mixed solutions 
from those of solutions of the single salts. There is one objective common 
to both treatments,-to show that much may be, and already has been, 
accomplished in the treatment of concentrated solutions. The extension 
of the first treatment to more complicated ions may be left to the special- 
ists, but the application of the second method may be made with profit 
in any study of the physical or chemical equilibria involving electrolyte 
solutions. It is not necessary that the method used be the same in all 
its details as that outlined here, but it is important that we realize that a 
fairly simple and fairly accurate approximate treatment is possible. The 

Figure 7 shows A In y versus the molality a t  constant composition. 
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uncertainties do increase with increasing concentration, but not very 
rapidly. A little further systematic work should reduce the uncertainties, 
but even now our methods of handling the results are as good as all but the 
best exDerimenta1 work. 
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